Flow-Injection Amperometric Determination of Tacrine based on Ion Transfer across a Water–Plasticized Polymeric Membrane Interface

نویسندگان

  • Joaquin A. Ortuño
  • Carlos Rueda
چکیده

A flow-injection pulse amperometric method for determining tacrine, based on ion transfer across a plasticized poly(vinyl chloride) (PVC) membrane, was developed. A four-electrode potentiostat with ohmic drop compensation was used, while a flow-through cell incorporated the four electrodes and the membrane, which contained tetrabutylammonium tetraphenylborate. The influence of the applied potential and of the flow-injection variables on the determination of tacrine was studied. In the selected conditions, a linear relationship between peak height and tacrine concentration was found up to 4x10M tacrine. The detection limit was 1x10M. Good repeatability was obtained. Some common ions and pharmaceutical excipients did not interfere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow-Injection Coulometric Detection Based on Ion Transfer and Its Application to the Determination of Chlorpromazine

A flow-injection coulometric method for the determination of chlorpromazine based on ion transfer into a plasticized poly(vinyl chloride) (PVC) membrane, was developed. The detector used consists of a flow-through cell that incorporates a plasticized poly(vinyl chloride) (PVC) membrane which contains tetrabutylammonium tetraphenylborate as electrolyte. The membrane is located between the flowin...

متن کامل

Flow-Injection Amperometric Determination of Ascorbic Acid Using a Graphite-Epoxy Composite Electrode Modified with Cobalt Phthalocyanine

A flow injection method is reported for the determination of ascorbic acid based on amperometric detection, using a cobalt(II) phthalocyanine (CoPc) modified graphite-epoxy electrode. The amperometric respons was evaluated with regard to pH, ionic strength of the electrolyte, flow rate of the carrier solution, injected sample volume and conditioning time of the electrode. The limit of detec...

متن کامل

Electrochemical mechanism of ion-ionophore recognition at plasticized polymer membrane/water interfaces.

Here, we report on the first electrochemical study that reveals the kinetics and molecular level mechanism of heterogeneous ion-ionophore recognition at plasticized polymer membrane/water interfaces. The new kinetic data provide greater understanding of this important ion-transfer (IT) process, which determines various dynamic characteristics of the current technologies that enable highly selec...

متن کامل

Flow Injection Potentiometric Determination of Cd2+ Ions Using a Coated Graphite Plasticized PVC-Membrane Electrode Based on 1, 3-Bis(2-cyanobenzene)triazene.

1, 3-Bis(2-cyanobenzene)triazene, L, was used as a suitable ionophore for the fabrication of a new PVC-based polymeric membrane coated graphite electrode for selective sensing of Cd2+ ion. The electrode exhibited a selective linear Nernstian response to Cd2+ ion at an optimal pH range of 6-9 with a limit of detection of 8.0 × 10-6 M and a fast response time of about 2 s. The electrode was used ...

متن کامل

Comparison of new optical sensor based on triazene ligand immobilized on PVC and triacetylcellulose membranes for Hg (II) Ion

For spectrophotometric analysis of Hg (II) ions, we have used and compared two membranes preparation methods using different polymer; one is poly(vinyl chloride) (PVC) and the other is triacetylcellulose (TAC). In the case of TAC membrane, it was treated with a ligand solution (1.166 × 10-3 mole L-1) in ethylenediamine at the ambient temperature for almost 2-5 min. However, in the case of PVC m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2007